Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5688, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202854

RESUMO

Human telencephalon is an evolutionarily advanced brain structure associated with many uniquely human behaviors and disorders. However, cell lineages and molecular pathways implicated in human telencephalic development remain largely unknown. We produce human telencephalic organoids from stem cell-derived single neural rosettes and investigate telencephalic development under normal and pathological conditions. We show that single neural rosette-derived organoids contain pallial and subpallial neural progenitors, excitatory and inhibitory neurons, as well as macroglial and periendothelial cells, and exhibit predictable organization and cytoarchitecture. We comprehensively characterize the properties of neurons in SNR-derived organoids and identify transcriptional programs associated with the specification of excitatory and inhibitory neural lineages from a common pool of NPs early in telencephalic development. We also demonstrate that neurons in organoids with a hemizygous deletion of an autism- and intellectual disability-associated gene SHANK3 exhibit intrinsic and excitatory synaptic deficits and impaired expression of several clustered protocadherins. Collectively, this study validates SNR-derived organoids as a reliable model for studying human telencephalic cortico-striatal development and identifies intrinsic, synaptic, and clustered protocadherin expression deficits in human telencephalic tissue with SHANK3 hemizygosity.


Assuntos
Transtorno Autístico , Transtorno Autístico/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Organoides/metabolismo , Protocaderinas , Telencéfalo
2.
Cell Rep ; 36(10): 109666, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496254

RESUMO

Although axonal damage induces rapid changes in gene expression in primary sensory neurons, it remains unclear how this process is initiated. The transcription factor ATF3, one of the earliest genes responding to nerve injury, regulates expression of downstream genes that enable axon regeneration. By exploiting ATF3 reporter systems, we identify topoisomerase inhibitors as ATF3 inducers, including camptothecin. Camptothecin increases ATF3 expression and promotes neurite outgrowth in sensory neurons in vitro and enhances axonal regeneration after sciatic nerve crush in vivo. Given the action of topoisomerases in producing DNA breaks, we determine that they do occur immediately after nerve damage at the ATF3 gene locus in injured sensory neurons and are further increased after camptothecin exposure. Formation of DNA breaks in injured sensory neurons and enhancement of it pharmacologically may contribute to the initiation of those transcriptional changes required for peripheral nerve regeneration.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Axônios/metabolismo , Quebras de DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , DNA Topoisomerases Tipo I/efeitos dos fármacos , Expressão Gênica/fisiologia , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Crescimento Neuronal/fisiologia , Nervo Isquiático/metabolismo
3.
Nat Protoc ; 15(10): 3154-3181, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778838

RESUMO

We provide a protocol for generating forebrain structures in vivo from mouse embryonic stem cells (ESCs) via neural blastocyst complementation (NBC). We developed this protocol for studies of development and function of specific forebrain regions, including the cerebral cortex and hippocampus. We describe a complete workflow, from methods for modifying a given genomic locus in ESCs via CRISPR-Cas9-mediated editing to the generation of mouse chimeras with ESC-reconstituted forebrain regions that can be directly analyzed. The procedure begins with genetic editing of mouse ESCs via CRISPR-Cas9, which can be accomplished in ~4-8 weeks. We provide protocols to achieve fluorescent labeling of ESCs in ~2-3 weeks, which allows tracing of the injected, ESC-derived donor cells in chimeras generated via NBC. Once modified ESCs are ready, NBC chimeras are generated in ~3 weeks via injection of ESCs into genetically programmed blastocysts that are subsequently transferred into pseudo-pregnant fosters. Our in vivo brain organogenesis platform is efficient, allowing functional and systematic analysis of genes and other genomic factors in as little as 3 months, in the context of a whole organism.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/embriologia , Células-Tronco Embrionárias Murinas/fisiologia , Animais , Blastocisto , Diferenciação Celular , Quimera , Feminino , Masculino , Camundongos , Organogênese , Fenótipo
4.
Nature ; 563(7729): 126-130, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305734

RESUMO

Genetically modified mice are commonly generated by the microinjection of pluripotent embryonic stem (ES) cells into wild-type host blastocysts1, producing chimeric progeny that require breeding for germline transmission and homozygosity of modified alleles. As an alternative approach and to facilitate studies of the immune system, we previously developed RAG2-deficient blastocyst complementation2. Because RAG2-deficient mice cannot undergo V(D)J recombination, they do not develop B or T lineage cells beyond the progenitor stage2: injecting RAG2-sufficient donor ES cells into RAG2-deficient blastocysts generates somatic chimaeras in which all mature lymphocytes derive from donor ES cells. This enables analysis, in mature lymphocytes, of the functions of genes that are required more generally for mouse development3. Blastocyst complementation has been extended to pancreas organogenesis4, and used to generate several other tissues or organs5-10, but an equivalent approach for brain organogenesis has not yet been achieved. Here we describe neural blastocyst complementation (NBC), which can be used to study the development and function of specific forebrain regions. NBC involves targeted ablation, mediated by diphtheria toxin subunit A, of host-derived dorsal telencephalic progenitors during development. This ablation creates a vacant forebrain niche in host embryos that results in agenesis of the cerebral cortex and hippocampus. Injection of donor ES cells into blastocysts with forebrain-specific targeting of diphtheria toxin subunit A enables donor-derived dorsal telencephalic progenitors to populate the vacant niche in the host embryos, giving rise to neocortices and hippocampi that are morphologically and neurologically normal with respect to learning and memory formation. Moreover, doublecortin-deficient ES cells-generated via a CRISPR-Cas9 approach-produced NBC chimaeras that faithfully recapitulated the phenotype of conventional, germline doublecortin-deficient mice. We conclude that NBC is a rapid and efficient approach to generate complex mouse models for studying forebrain functions; this approach could more broadly facilitate organogenesis based on blastocyst complementation.


Assuntos
Blastocisto/citologia , Blastocisto/metabolismo , Organogênese , Prosencéfalo/citologia , Prosencéfalo/embriologia , Animais , Quimera/embriologia , Quimera/genética , Proteínas de Ligação a DNA/deficiência , Proteínas do Domínio Duplacortina , Feminino , Teste de Complementação Genética , Células Germinativas/metabolismo , Hipocampo/anatomia & histologia , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/deficiência , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Neocórtex/anatomia & histologia , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/deficiência , Fenótipo , Prosencéfalo/anatomia & histologia , Prosencéfalo/fisiologia
5.
Proc Natl Acad Sci U S A ; 113(8): 2258-63, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26873106

RESUMO

High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.


Assuntos
Quebras de DNA de Cadeia Dupla , Células-Tronco Neurais/metabolismo , Transcrição Gênica , Translocação Genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/metabolismo , Células Cultivadas , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes myc , Genes p53 , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/deficiência , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sítio de Iniciação de Transcrição , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Cell ; 164(4): 644-55, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26871630

RESUMO

Repair of DNA double-strand breaks (DSBs) by non-homologous end joining is critical for neural development, and brain cells frequently contain somatic genomic variations that might involve DSB intermediates. We now use an unbiased, high-throughput approach to identify genomic regions harboring recurrent DSBs in primary neural stem/progenitor cells (NSPCs). We identify 27 recurrent DSB clusters (RDCs), and remarkably, all occur within gene bodies. Most of these NSPC RDCs were detected only upon mild, aphidicolin-induced replication stress, providing a nucleotide-resolution view of replication-associated genomic fragile sites. The vast majority of RDCs occur in long, transcribed, and late-replicating genes. Moreover, almost 90% of identified RDC-containing genes are involved in synapse function and/or neural cell adhesion, with a substantial fraction also implicated in tumor suppression and/or mental disorders. Our characterization of NSPC RDCs reveals a basis of gene fragility and suggests potential impacts of DNA breaks on neurodevelopment and neural functions.


Assuntos
Quebras de DNA , Células-Tronco Neurais/metabolismo , Animais , Afidicolina/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo/citologia , Adesão Celular , Moléculas de Adesão Celular Neuronais/metabolismo , Quebras de DNA/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteínas Ligadas por GPI/metabolismo , Genoma , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Sinapses , Fatores de Transcrição/metabolismo , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA